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Abstract 

Anomaly detection has been used successfully on hyperspectral images for over a 

decade. However, there is an ever increasing need for real-time anomaly detectors. 

Historically, anomaly detection methods have focused on analysis after the entire image 

has been collected. As useful as post-collection anomaly detection is, there is a great 

advantage to detecting an anomaly as it is being collected.  

This research is focused on speeding up the process of detection for a pre-existing 

method, Linear RX, which is a variation on the traditional Reed-Xiaoli detector. By 

speeding up the process of detection, it is possible to create a real-time anomaly detector. 

The window covariance matrix is our main area focus for speed improvement. Several 

methods were investigated, including QR factorization and tracking the change in the 

window covariance matrix as it moves through the image. Finally, performance 

comparisons are made to the original Linear RX detector. 
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REAL-TIME ANOMALY DETECTION OF HYPERSPECTRAL IMAGES 

1.  Introduction 

1.1 General Issue 

As sensor technology advances, the amount of data produced is ever increasing. 

This massive amount of data makes anomaly detection by human eyes alone virtually 

impossible. Anomaly detection by humans alone is also impractical, since the human eye 

can be tricked by methods such as camouflage. Because of this, anomaly detection 

methods are being created to help analyze images in an accurate and timely manner. 

Historically, anomaly detection methods have focused on analysis after the entire 

image has been collected. As useful as post-collection anomaly detection is, there is a 

great advantage to detecting an anomaly as the data is being collected. The faster an 

anomaly is detected, the sooner something can be done about it. By speeding up the 

process of detection, it is within the realm of possibility to create an anomaly detector 

that works in real-time. 

1.2 Methodology 

One common anomaly detector is the RX detector (Reed & Yu, 1990). This 

detector decides whether each pixel is a statistical anomaly or not by comparing a pixel’s 

score to a statistical value. This pixel’s score is computed using an inverse covariance 

matrix. Linear RX (Williams, Bihl, & Bauer) is another anomaly detector that uses a 

similar technique of scoring using an inverse covariance matrix. It is well known that 

taking the inverse of a large matrix, like a covariance matrix, can be very computationally 

intensive and time consuming. However, it has been shown in (Chang, Ren, & Chiang, 
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2001) and (Du & Zhang, 2011) that by using QR factorization, the inverse of a 

covariance matrix can be found in a more timely manner. In this research, we will show 

that QR factorization can indeed speed up Linear RX and that the qualities of Linear RX 

can be taken advantage of in a real-time processing setting.  

1.3 Preview 

Chapter 2 explains some of the basics of hyperspectral images and anomaly 

detection. It also contains information on some current real-time anomaly detectors as 

well as the concepts used in the implementation and analysis of this research. Chapter 3 

details how QR factorization is implemented in order to speed up the detection process. 

Chapter 4 includes the analysis and results of this new method. Finally, Chapter 5 

provides an overview of the work completed in this paper as well as recommendations for 

future work. 
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2.  Literature Review 

This chapter outlines current practices in hyperspectral imaging (HSI) and 

anomaly detection as well as mathematical methods used in this thesis. This chapter is 

organized into six sections: HSI basics, Anomaly Detection, Principal Components 

Analysis, Normalized Difference Vegetation Index, QR Factorization, and Performance 

Measurements. 

2.1 HSI Basics 

All images capture some portion of the electromagnetic (EM) spectrum. Images 

taken with a common digital camera capture the visible portion of the EM spectrum in 

three discrete wavelength bands: red, green and blue. In a similar manner, multispectral 

images capture discrete wavelength bands, but feature multiple bands across several EM 

regions. Hyperspectral images are similar in concept to multispectral images except for 

some key differences. One of the main differences is that instead of capturing discrete 

wavelength bands, hyperspectral images capture a finely sampled contiguous region of 

the EM spectrum, which is then broken down into many bands. Hyperspectral images are 

comprised of 20 or more wavelength bands (Stein, Beaven, Hoff, Winter, Schaum, & 

Stocker, 2002). Figure 1 illustrates the EM spectrum and the various regions of the 

spectrum. 
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Figure 1: Electromagnetic Spectrum. Reprinted from (Landgrebe D. A., 2003) 

 

All of this information must be properly organized and the two aspects of the data 

that must be captured: spatial location and the spectral wavelength band. Typically the 

hyperspectral image data is organized into an ‘image cube’ (Smeteck & Bauer, 2008). 

This 3-dimensional data array has height m, width n, and spectral k dimensions. In this 

way, the spatial location is recorded as a pixel, using the height and width dimensions, 

and the spectral wavelength band is captured in the third dimension. This image cube can 

be thought of as a stack of k images of size mxn, where each image is a representation of 

the same physical area, but on different spectral bands. Figure 2 demonstrates this 

concept. 
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Figure 2: Illustration of Matrices within an Image Cube. Reprinted from (Miller, 2009) 

 

Hyperspectral imaging is a powerful tool because it takes advantage of the fact 

that different materials reflect, absorb and emit electromagnetic energy differently due to 

each material’s molecular composition (Manolakis & Shaw, 2002), (Eismann, 2011). 

Theoretically each material has a unique reflection and radiation pattern, which is 

sometimes called a material’s spectral signature. Because of this, different materials can 

be identified by their spectral signature. For example, trees will reflect and radiate 

electromagnetic energy differently than a parking lot and therefore will have a different 

spectral signature. By capturing these spectral signatures, HSI is useful in a variety of 

applications ranging from environmental monitoring to surveillance (Stein, Beaven, Hoff, 

Winter, Schaum, & Stocker, 2002). 
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This paper will assume that the HSI data is collected from a “push broom” sensor. 

This type of sensor collects data one line at a time as the sensor platform (i.e. satellite, 

plane, or UAV) flies over the area of interest. 

 

Figure 3: “Pushbroom” Data Collection. Reprinted from (Bihl) 

 

2.2 Anomaly Detection 

Anomaly detection and recognition are relatively common applications of HSI. 

There are two general types of detectors: anomaly detection algorithms and signature 

matching algorithms (Stein, Beaven, Hoff, Winter, Schaum, & Stocker, 2002), (Eismann, 

2011). Signature matching algorithms require a priori information on what type of 

material the detector is searching for. This can prove difficult, since the type of target is 

not always known. Even if the type of target is known, atmospheric conditions distort 

spectral readings, which then affect the success of detection. Anomaly detection, on the 

other hand, does not require a priori information about the material the detector is 

searching for. Instead, anomaly detectors are designed to find anomalies or pixels that are 
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statistically different from the background of the image (Eismann, 2011), (Stein, Beaven, 

Hoff, Winter, Schaum, & Stocker, 2002). It is important to note that these detectors only 

find anomalous objects; they do not classify its spectral signature. For example, if there is 

a building in the middle of a field, an anomaly detector might recognize the building as 

an anomaly, but would not know that it is a building. However, if the image contains 

many buildings, parking lots, and streets, then the detector may recognize the buildings as 

background and grass growing in a sidewalk crack as an anomaly. 

Hyperspectral images are better suited for anomaly detection than a common 

RGB image. This is due to the multiple spectral bands within which an anomaly could be 

detected.  Suppose there is a field and in the middle of this field there is a crate disguised 

with camouflage. If we run an anomaly detection algorithm on an RGB image of this 

field, an anomaly may not be detected. The camouflage could almost completely disguise 

the crate in the RGB image, but it would not be so easily hidden in a hyperspectral image 

of the field. The anomaly may be detected on a different spectral band, say in the infrared 

region, which is not captured in the RGB image, where water absorption properties 

would be noticeably different between the camouflage and vegetation in the field. This is 

why HSI is more effective at detecting anomalies than common RGB images. 

There are three types of anomaly detection techniques: supervised, semi-

supervised, and unsupervised. Training data of both the background and the anomaly is 

needed for supervised detection. Semi-supervised detection only requires training data of 

the background. As for unsupervised detection, no training data is required, just as the 

name suggests. Depending on the situation, supervised and semi-supervised detection can 

have significant issues, since backgrounds and anomalies can vary drastically from image 
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to image. Because of this, it is difficult to train a detector on one image and use it on 

another with good results.  

There are two main approaches to defining the background of the image: local 

and global. Global anomaly detection defines background as the entire image excluding 

the test pixel. Therefore, global methods compare a given test pixel to the rest of the 

image. Local anomaly detection defines background as a smaller subset of the image. 

Usually, it compares the test pixel to a window of pixels around the test pixel. Both 

methods have their advantages. Global anomaly detection is less susceptible to false 

alarms than local anomaly detection. On the other hand, local anomaly detection is better 

at finding an isolated target that resembles background (Stein, Beaven, Hoff, Winter, 

Schaum, & Stocker, 2002), (Smeteck & Bauer, 2008). 

One common method used to find pixels that are statistically different from the 

background is to measure the Mahalanobis distance between the pixel and the mean 

vector of the background (Eismann, 2011). This distance is defined as: 

Equation 1                   (1) 

where   is the test pixel,   is the mean vector of the background, and   is the covariance 

matrix of the background (Dillon & Goldstein, 1984). When compared to Euclidean 

distance, Mahalanobis distance has the distinct advantage of accounting for any 

correlations between the variables (Dillon & Goldstein, 1984). This is why this measure 

has been used in developing several anomaly detectors, including the Reed-Xiaoli 

detector. 
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2.2.1 Reed-Xiaoli (RX) Detector 

The Reed-Xiaoli (RX) detector, introduced by Reed and Yu (Reed & Yu, 1990), 

is an unsupervised local anomaly detector based on the Mahalanobis distance. Using a 

moving window, the RX detector identifies anomalies by comparing the center pixel to 

the rest of the pixels in the window, as illustrated in Figure 4. This center pixel is given a 

score based on a generalized likelihood ratio test. After a pixel has been tested, the 

window is moved across each row, one pixel at a time. 

 

Figure 4: RX Moving Window. Reprinted from (Williams, Bihl, & Bauer) 

 

The RX detector assumes Gaussian data and uses the following Equation 2 as the 

pixel score 

Equation 

2 
              

 

   
    

 

   
             

  

      (2) 

 

where   is the test pixel,    is the mean vector of the window,   is the covariance matrix 

of the window, and   is the number of pixels in the window. For a given tolerance α, if a 
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RX(x) score is greater than   
       

, then x is considered an anomaly. Note that as the 

window size, N, gets larger, the RX score approaches the Mahalanobis distance. 

Choosing an appropriately sized window for the RX detector can prove difficult. 

If the window is too restrictive, the detector will not pick up on large anomalies because 

the majority of the window is filled with the pixels of that anomaly. If the window is too 

large, the window could contain several anomalies and the representation of the original 

background is corrupted. Because of this, it is important to set the window size based on 

what sized target you want to detect. Variations of RX exist to counteract pixel spatial 

proximity issues. These methods include applying a guard window around a test pixel, so 

that pixels immediately surrounding the test pixel are not included in the background 

calculation (Eismann, 2011), and different geometric window shapes in order to increase 

the spatial distance of the pixels used to calculate the background (Williams, Bihl, & 

Bauer).  

2.2.2 Linear RX Detector 

Linear RX (LRX), developed by Williams, Bihl, and Bauer, is a variation on the 

classic RX detector (Williams, Bihl, & Bauer). Instead of using a moving window around 

the test pixel, LRX looks at a line of pixels above and below the test pixels. If there are 

insufficient pixels above or below the test pixel, the remaining pixels are taken from the 

bottom of the previous column or the top of the next column, respectively, as shown in 

Figure 5. 
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Figure 5: LRX Moving Column. Reprinted from (Williams, Bihl, & Bauer) 

 

LRX was created to address the issue of pixel correlation based on spatial 

proximity (Williams, Bihl, & Bauer). For example, a large anomaly that is about the size 

of the RX window will not be picked up by the standard RX detector. However, the LRX 

will recognize it as an anomaly since it is comparing the test pixel to pixels across a wide 

range of the image. The use of a line of pixels in place of a window increases the average 

distance between the pixels, which allows for reduction of bias and error in the estimation 

of the mean vector and covariance matrix (Williams, Bihl, & Bauer). 

2.2.3 Real-time Detectors 

There is an ever increasing need for real-time anomaly detection methods (Du & 

Zhang, 2011). We use the term “real-time” loosely, since there really is no definition of 

what makes a detection method real-time. For our purposes, if the detection method can 

be carried out while new rows of data are added and it is at least as fast as current post-

collection methods, we will consider it real-time. 
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There are two current real-time detectors that will be used for comparison for this 

paper. Both are presented in Stellman et al. (Stellman, Hazel, Bucholtz, Michalowicz, 

Stocker, & Schaaf, 2000). 

The first detector is a real-time version of the RX algorithm. Each time there is 

new data, a new mean vector µ and a new covariance matrix S are calculated using 

Equation 3 and Equation 4 respectively. Note that the contribution of the new pixel is 

weighted by α as defined by Equation 5. 

Equation 3                  (3) 

 

Equation 4                                      
  (4) 

 

Equation 5   
 

      
 (5) 

where,    is the vector of spectral components for the n
th

 pixel and      is the sample 

average (Stellman, Hazel, Bucholtz, Michalowicz, Stocker, & Schaaf, 2000). The inverse 

covariance matrix is calculated by: 

Equation 6            (6) 

where, E is a matrix of the eigenvectors of the covariance matrix with the form   

          with j as the number of spectral bands (Stellman, Hazel, Bucholtz, 

Michalowicz, Stocker, & Schaaf, 2000). Also, Λ is the diagonal matrix with j of the 

covariance matrix eigenvalues on the diagonal. Then defining principal components    as  

Equation 7               (7) 

The RX score    is calculated using 
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Equation 

8           
                 

        
      

  

  

 

   

 
(8) 

where,       represents the i
th

 element of the principal component    and    is the 

associated eigenvalue. 

For the second real-time anomaly detection algorithm, we will use a clustering 

algorithm defined in (Stellman, Hazel, Bucholtz, Michalowicz, Stocker, & Schaaf, 2000). 

This clustering algorithm is a semi-supervised detection method, therefore it requires a 

training set of background data. The algorithm looks at N frames of sensor data and each 

new frame of data replaces the oldest frame. The training set is used as the initial N 

frames which are then divided into C clusters. Then each pixel has the mean vector of its 

cluster subtracted from it and a covariance matrix is computed for the centered pixels. As 

new frames of data are included, the algorithm separates the new pixels into the pre-

constructed clusters, by finding the cluster whose mean is closest to that pixel. This can 

also be stated as: 

Equation 9       
         

          (9) 

where cn is the cluster to which the n
th

 pixel, zn, is assigned and mi is the mean of the i
th

 

cluster.  
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Once all of the new pixels have been assigned to a cluster, the mean of each cluster is 

recalculated. Each pixel in the new frame is then centered and the covariance matrix is 

updated, using Equation 10: 

Equation 10 
          

 

 
   

 

      
      

 

 

   

 
(10) 

where    is the jth update of the covariance matrix,   is the number of frames included, 

  is the number of pixels in a frame, and    is the centered ith pixel. 

2.3 Principal Components Analysis 

There are many constraints on the storage and analysis of HSI data. For example, 

the storage capability of onboard systems may be limited for the un-manned vehicle 

(UAV), helicopter, or airplane that is collecting the data. Also, much of the analysis is 

carried out on commercial off-the-shelf (COTS) computers (Farrell & Mersereau, 2005). 

Because of these limitations, it is common practice to conduct a data reduction technique, 

such as principal components analysis (PCA) (Gu, Liu, & Zhang, 2006), (Farrell & 

Mersereau, 2005). PCA is a type of multivariate statistical technique that is used to 

reduce the dimensionality of a set of data. Principal components are linear combination of 

the data’s variables (Dillon & Goldstein, 1984). The first component is created such that 

the greatest amount of variance in the data is captured by the linear combination while 

the length equals one. The second component is constructed orthogonal to the first 

component and it explains as much of the remaining variance as possible. This process 

continues until v components are created where v is the number of variables in the data 

set. In order to reduce dimensionality, only some of the principal components are 
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retained. However, it is possible to lose important knowledge contained in an image. 

Therefore, the goal is to explain the most variance of the original set with as few 

principal components as possible. Retained principal components are then used instead of 

the variables in the analysis. 

Applying this to HSI, principal components are found in the data cube with the 

spectral bands acting as the variables. By using principal components, we can achieve 

dimensionality reductions of approximately 90 percent, while retaining much of the 

variance within the data. However, it is important to retain a sufficient number of 

principal components in order for anomalies, which can be a small percentage of the data, 

to be detected. 

2.4 QR Factorization 

QR factorization is one technique that can be used to help simplify matrix 

computations in the RX equation. How QR factorization accomplishes this task is shown 

later in the paper. 

A real matrix A can be factored into two matrices: an orthogonal matrix Q and an 

upper or right triangular matrix R. The factorization looks like Equation 11. 

Equation 11      (11) 

There are several ways to compute Q and R, including the Givens rotations, Householder 

transformations and the Gram-Schmidt orthogonalization process (Golub & Van Loan, 

1989), (Meyer, 2000).  
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2.5 Performance Measurements 

In order to measure the performance of the anomaly detection methods, we need 

to look at what mistakes the methods are making. Each pixel has two possible true states, 

either the pixel is an anomaly or it is not. The detector also can classify each pixel as an 

anomaly or background. This leads to four possible states for the classification of each 

pixel, which are laid out in Figure 6, commonly termed a confusion matrix. 

 

 
 Detector Classification 

  Anomaly Background 

T
ru

e 
S

ta
te

 

Anomaly 
True 

Positive 

False 

Negative 

Background 
False 
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True 

Negative 

Figure 6: Confusion Matrix. Adapted from (Fawcett, 2006) 

 

As shown in the confusion matrix above, there are two ways the detector can be 

correct. If a pixel is true positive or true negative, then the detector successfully classified 

the true state of the pixel. However, if a pixel is false positive or false negative, then the 

detector classified a background pixel as an anomaly or an anomalous pixel as 

background. Obviously, we are interested in a detector that has many true positives or 

true negatives, with very few false positives or false negatives. 

We will be particularly concerned with the true positive fraction (TPF) and false 

positive fraction (FPF). The true positive fraction is defined as the number of true 

positives divided by the number of anomalies. The TPF essentially is the percentage of 

anomalies the detector has successfully identified. The false positive fraction is the 
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number of false positives divided by the number of non-anomalies. This means the FPF is 

the percentage of non-anomalies that are incorrectly identified. 

Receiver operating characteristic (ROC) curves are commonly used to assess the 

accuracy of detectors. A ROC curve is a plot of the TPF vs. FPF given some incremental 

change in the threshold (Fawcett, 2006). A ROC curve shows how changing the detection 

threshold affects how anomalies are detected. A lower threshold would give fewer false 

alarms, but would detect very few targets whereas a higher threshold would detect most 

of the targets, but would have many false positives.  

In order to compare several methods, each is used with the same changes in 

threshold. The “northwest” rule is commonly used as a discriminator (Fawcett, 2006). 

That is if method A’s ROC curve is entirely to the north and/or west of method B’s ROC 

curve, it is said that method A dominates B. This means that no matter the threshold, 

method A performs better than B. This is why ROC curves are so useful to compare 

several detection methods.  
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3.0 Methodology 

3.1 Chapter Overview 

This chapter outlines the assumptions and process we propose in order to speed 

up the Linear RX detector and implement it as a real-time anomaly detector. 

3.2 Algorithm Development 

The basic idea behind our algorithm comes from the very nature of HSI data 

collection and the Linear RX detector. As explained in Chapter 2, HSI sensors are 

assumed within this research to collect hyperspectral image data using a “pushbroom” 

sweep of the area. Each sweep of the HSI sensor corresponds to a row of pixels. Since the 

LRX detector uses a line of pixels for comparison instead of a local window, the 

sampling of the image mimics how the image is collected. For the purpose of this paper, 

we will assume that the sensor is collecting data from west to east with respect to the 

picture (see Figure 7).  It is important to note that the original data was collected 

perpendicular to this direction. However, this research is using subsets of the original 

HYDICE imagery, so the assumed direction of collection is not important. It is also 

important to note that the LRX detector is sensitive to the shape of the image. Since the 

window is a line, the height of the image plays a key role in the average distance between 

the window pixels. This average distance is the key to reducing correlation due to spatial 

proximity.  
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Figure 7: Direction of Data Collection Assumption 

 

3.2.1 Changes to the Linear RX Anomaly Detector 

In order to speed up the LRX detector we decided to speed up the calculation of 

the inverse covariance matrix. This calculation is one area of not only the LRX detector, 

but many Mahalanobis based anomaly detectors that has large computation times. When 

working with large matrices, calculating the covariance matrix and taking the inverse can 

take a long time. For the LRX algorithm, over 40% of the run time is spent calculating 

the covariance matrix and over 25% of the run time is spent on the score calculation, 

which contains the covariance matrix inverse. It has been shown that the inverse 

covariance matrix can be calculated faster using QR factorization in Chang et al. (Chang, 

Ren, & Chiang, 2001), and by Du and Zhang (Du & Zhang, 2011). 

The window covariance matrix is described by Equation 12, 
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Equation 12    
 

   
     (12) 

where S is the covariance matrix, N is the size of the window, X is an     matrix of the 

mean corrected data from the window, an p is the number of spectral bands. Recalling 

Equation 12 which expressed that any matrix, can be factored through QR; Equation 13 

extends this to include X  

Equation 13       (13) 

We can now express the covariance matrix in terms of Q and R as shown in Equation 14. 

Equation 14    
 

   
            

 

   
        (14) 

Since Q is orthogonal,       . This knowledge simplifies the equation even 

further as displayed in Equation 15. 

Equation 15    
 

   
     (15) 

Now we take the inverse of both sides we come up with Equation 16. 

Equation 16                      (16) 

Even though there are still matrices to be inverted, they are upper triangular 

matrices and therefore easier to invert than a covariance matrix. Since we only are 

concerned in finding matrix R, Cholesky Decomposition is used in this research (Meyer, 

2000). 

One large difference made to the LRX detector was to use the Mahalanobis 

distance, Equation 1, instead of the usual RX score, Equation 2, which is based on the 

general likelihood ratio test. Since our focus is on using a different method to calculate 

the inverse covariance matrix, we need the score to be in terms of the inverse covariance 
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matrix. Switching these two equations should not change the detection much because, as 

explained in chapter 2, the RX score approaches Mahalanobis distance as the window 

size gets larger. This assertion was tested by using Mahalanobis distance in LRX with the 

optimal settings set forth by Williams et al. in (Williams, Bihl, & Bauer). The ROC 

curves of LRX and LRX with Mahalanobis distance were exactly the same. Therefore, 

Mahalanobis distance is a good estimate to the RX score. After replacing the inverse 

covariance matrix in Equation 1 with our result in Equation 16, we have Equation 17. 

Equation 17                                (17) 

This is the pixel score that will be used in our real-time LRX detector. 

3.2.2 Assumption for Principal Components Analysis 

The Linear RX algorithm, as well as many detection algorithms, benefit greatly 

by the use of principal components analysis (PCA). This is easily done when working on 

an image that has already been collected, but is tricky when trying to work on an image 

that is in the process of being collected. Therefore, we decided to run PCA on a set 

number of beginning columns, say k columns, and apply the loadings across all the 

incoming data. One downside to this approach is if the background changes dramatically 

from the first k columns to later in the image, then the original PCA loadings would not 

represent the rest of the picture well.  

For example, consider Figure 8, an image that is being collected where the left 

part is a sandy beach and the right part is ocean. If PCA is carried out on the first k 

columns and all of those columns are of the sand, then the loadings are useless in 

describing the part of the image that is ocean. For the scope of this paper, we will assume 

that the first k columns of the image will be a good indication of the background for the 
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rest of the image. In section 5.3.1, we will propose a possible solution to this problem that 

would require further study. 

 

Figure 8: Illustration of the Issue with PCA in Real-Time Detection 

 

3.2.3 Decreasing the Number of Covariance Matrix Changes 

In many cases, images have a similar background throughout the entire image. 

This background could be a grassy plain, dessert area, or even a forest, but the point is we 

may not need to change our window covariance matrix every time we change the 

window. If the (n+1)
th

 window has similar data as the n
th

 window, then we could 

potentially use the covariance matrix from the n
th

 window. This could speed up the 

calculation times, since we could cut out the covariance matrix update. Because of this, 

we decided to track the covariance matrix changes by tracking the trace of the covariance 

matrix. If the change from one step to the next was significantly large, we would change 
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the covariance matrix for the RX score calculation. If not, we would continue using the 

covariance matrix we used in the previous step. 

3.3 Experimental Design 

We expect that 3 factors will play a role in the detector’s accuracy: the number of 

pixels to include in our window (or line size), the number of initial columns to run PCA 

on, and the number of principal components to retain. We want line size to be scaled 

appropriately to the size of the image. Because there is a large range of image sizes, we 

will express line size in terms of the image height (H).  

Table 1: Settings Tested for Optimal Model Accuracy 

Line Size 0.5H, 1H, 1.5H, 2H 

Number of Columns in PCA 5, 50 

Number of PCs 3, 4, 5, 6, 7, 8, 9, 10 

 

Note that if the algorithm waits for 5 columns to be collected by the sensor in 

order to run PCA, then by the time the analysis is started on the first pixel, the sensor has 

collected 5 or more columns of data. Because the largest line size we would use is 2H, we 

could start the analysis on the first pixel of the second column and not have any issue 

with our window catching up with the sensor. This of course is assuming that the sensor 

is just as fast as the algorithm. Since we are not concerned about the algorithm catching 

up with the sensor, we do not need to run a special simulation that slowly adds data to the 

image as the image is being analyzed. We can simply run the analysis on the entire 

image. 
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3.4 HYDICE Hyperspectral Images 

This research uses several images collected by an airborne HSI Sensor called 

HYDICE (Hyperspectral Digital Imagery Collection Equipment). Specifically, the 

images come from the Forest I and Desert Radiance II canonical datasets from the 

HYDICE program’s 1995 data collection experiments (Eismann, 2011), (Orloff, et al., 

2000).  

There are two sets of images: training and test images. The training images will 

be used to find the optimal settings for the real-time LRX. After these optimal settings are 

found, the real-time LRX is used on the test images to validate the settings. Details on 

each image are displayed in Table 2 for the training images and in Table 3 for the test 

images. All of the images have 210 spectral bands and are taken from an altitude of 

5,000’ AGL (Above Ground Level) except for ARES5D_20kFT. See Appendix A for 

true color images and truth maps. 

Table 2: Details on the HYDICE Training Images 

HYDICE 

Image 

Size Number 

of Pixels 

Target 

Pixels 

Total 

Targets 

Scene 

Type 

ARES1D 291x199 57909 235 6 Desert 

ARES1F 191x160 30560 1007 10 Forest 

ARES2D 215x104 22360 523 46 Desert 

ARES2F 312x152 47424 307 30 Forest 

ARES3F 226x136 30736 314 20 Forest 

ARES4F 205x80 16400 109 29 Forest 
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Table 3: Details on the HYDICE Test Images 

HYDICE Image Size Number 

of Pixels 

Target 

Pixels 

Total 

Targets 

Scene 

Type 

ARES3D 156x156 24336 438 4 Desert 

ARES4 460x78 35880 882 15 Desert 

ARES5 355x150 53250 585 15 Forest 

ARES5D_20kFT 139x68 9450 129 28 Desert 

 

3.5 Summary 

 In this chapter, we’ve covered the development of our real-time anomaly detector, 

including how we intend to speed up the Linear RX detector using QR factorization to 

calculate the inverse covariance matrix. We’ve also covered our base assumptions, such 

as the direction the data is collected and that our data has similar background data 

throughout the image. Finally, we presented the settings we will test and the images we 

will use. Next, in chapter 4, we will cover the analysis and results of this research. 
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4.  Analysis and Results 

4.1 Chapter Overview 

In this chapter, we will cover the analysis and results for the real-time LRX. This 

chapter is broken into four sections, which include tracking the covariance matrix 

changes, finding the best settings for the real-time LRX, time savings of the real-time 

LRX versus the original LRX, and the accuracy comparison between the real-time LRX 

and the original LRX.  

4.2 Tracking the Covariance Matrix Changes 

By tracking the differences in the trace of the window covariance matrix, it was 

anticipated to decrease the run times of the anomaly detector by eliminating many of the 

covariance matrix updates.   

We incorporated in the algorithm a check for the change in the trace of the 

window covariance matrix each time the window moves to a new test pixel. After 

looking at the differences for one image, ARES 1F, we noticed the differences were 

either incredibly small or quite large. The histogram for the differences is displayed in 

Table 4. Note that about half the differences are less than            and the other half 

are greater than 100. Based on this table, we implemented a rule of thumb that if the trace 

difference is greater than         , then use the new covariance matrix in the 

calculation of the score. If the trace difference is less than         , then the 

covariance matrix from the previous step can be used. The number of updates required 

varies a little by image, but generally less than 10% of the covariance matrices have to be 

updated using this threshold. 
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Table 4: Histogram of the Differences in the Trace for ARES 1F 

Bin Frequency 

1.00E-10 15468 

1.00E-08 0 

1.00E-06 0 

1.00E-04 0 

1.00E-02 0 

1.00E+02 0 

1.00E+04 11 

1.00E+06 825 

1.00E+08 13206 

1.00E+10 1050 

More 0 

 

After implementing this check on a couple of images, we noticed an interesting 

side effect. By mapping the pixels that were the center or test pixel for the windows that 

had a large change in the covariance matrix, we can see the anomalies. Note that the 

results do change with different cutoff values and different settings. To create Figures 9 

and 10, we retained 9 PCs and had a line size of 2H, where H is the height of the image. 

In addition to finding anomalies, we see in Figure 10 that the tree line and the 

roads are picked up as well. This method appears to pick up large spectral changes from 

one pixel to another. This would explain why anomalies as well as tree lines and roads 

are picked up. 
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Figure 9: ARES 2D Image and Mapping of Pixels with a Large Trace Difference 

 

Figure 10: ARES 3F Image and Mapping of Pixels with a Large Trace Difference 
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Although this method eliminates about half of the covariance matrix updates, it 

does not create any time savings. Since this method tracks the covariance matrix, the 

steps taken to track the matrix are so computationally intensive that the entire algorithm 

took longer to run. Because of the increased run time, it was decided to not include this 

method into our algorithm. 

4.3 Finding the Best Settings 

In order to determine the best settings for the real-time LRX, the detector was 

used on each of the 6 training images using all of possible combinations of the settings 

listed in Table 1. It was decided to find the best average true positive fraction (TPF) for a 

false positive fraction (FPF) of 0.1. If the FPF was much higher than 0.1, then the 

detector would not be very useful since it is identifying over 10% of the background 

pixels as anomalies. We are looking for the best average TPF because we want the best 

settings for all of the images, not just one particular image. First we found best settings 

with the first 5 columns used for PCA for the whole image. The settings with the best 

average TPF were found to be 10 PCs and a line size of 1H with an average TPF of 

0.8560. The same method was used, but using the first 50 columns for PCA and the same 

settings were found as optimal with an average TPF of 0.8679. Although the average TPF 

is larger for the method using the first 50 columns, the difference is not great and it would 

not be practical to wait for 50 columns to be collected before the image could even start 

to be analyzed. For this reason the optimal settings we will use are 5 columns for PCA, 

retaining 10 PCs and a line size of 1H. 
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4.4 Time Savings 

After determining the best settings, we used the real-time LRX on the 4 test 

images described in chapter 3. The run time was recorded for 20 runs and an average was 

taken so we have an average run time per image. An average run time was collected for 

each image using LRX as well, using the best settings described by Williams et al. 

(Williams, Bihl, & Bauer). The results are displayed in Table 5. Overall, the time savings 

is approximately 40% for each image. Although it may only be a few seconds in each 

case, such improvement can add up over time. 

Table 5: Average Run Time in Seconds for LRX and LRX with QR 

  ARES3D ARES 4 ARES 5 ARES5D_20kFT 

LRX  Average 4.97 8.91 12.57 1.91 

 Standard 

Deviation 

0.03 0.02 0.03 0.02 

LRX with QR Average 2.65 5.68 7.59 1.02 

 Standard 

Deviation 

0.01 0.01 0.01 0.00 

Time Savings  2.32 3.23 4.98 0.89 

 

4.5 Accuracy 

Using the best settings, we used the real-time LRX and LRX on the test images 

and created ROC curves to compare the accuracy of the methods. Figures 11 through 14 

show the ROC graphs. For all the graphs, the real-time LRX ROC is below the LRX 

ROC. This suggests that the accuracy is slightly worse with the real-time LRX. However, 

the difference is minimal and probably due to the use of 5 columns for PCA rather than 

the entire image. The only ROC with any significant difference is ARES5D_20kFT and it 

is likely the difference is due to the height the image was taken from. Since the detectors 
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were trained on images that were taken 5,000’ AGL, it’s reasonable to assume there will 

be a difference when the detector is used on an image taken at 20,000’ AGL.  
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Figure 11: ROC Comparison of Methods on ARES 3D 

 

Figure 12: ROC Comparison of Methods on ARES 4 
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Figure 13: ROC Comparison of Methods on ARES 5 

 

Figure 14: ROC Comparison of Methods on ARES 5D 20kFT 
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4.6 Summary 

 In this chapter, we saw that tracking the difference in the trace of the covariance 

matrix from one window to another does not save much time although it has the nice side 

effect of being able to pick out some major spectral differences. After running 32 

possibilities on 6 training images, the best average true positive fraction was found for a 

false positive fraction of 0.1. The settings for this best average TPF were decided to be 

the best settings for the real-time LRX and consisted of using 10 PCs and a line size of 

2H, where H is the height of the image. The same best settings were found using 5 

columns for PCA and 50 columns. We chose to go with 5 columns for PCA, since the 

goal is to analyze the image as close to real-time as possible. With these best settings, 

there was a time savings of approximately 40% between the real-time LRX and the LRX. 

The accuracy was a little worse, but not enough to cause much concern.  
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5. Conclusions and Recommendations 

5.1 Chapter Overview 

This chapter lists the conclusions of the research as well as recommendations for 

future research. 

5.2 Conclusions of Research 

Using QR factorization to replace the inverse covariance matrix with an inverse of 

an upper triangular matrix greatly improves the speed of the Linear RX anomaly detector. 

With approximately 40% time savings, the LRX detector with QR factorization could 

potentially be used as a real-time anomaly detector. The accuracy of the real-time LRX 

detector was shown to be about as good as the LRX detector. Accuracy of the real-time 

LRX was only slightly worse than the LRX and was probably due to the assumptions 

made about using Mahalanobis distance and using 5 columns for PCA. 

5.3 Recommendations for Future Research 

5.3.1 Proposed Process for Situation that Violate the Assumptions 

In order to use principal components analysis (PCA) on the images in real-time, 

we made the assumption that the first k columns of the image are a good indicator of 

what to expect from the rest of the image. We used these first k columns to run PCA on 

and apply the loadings across the rest of the pixels.  

In the case that this assumption cannot be met, we suggest that the covariance 

matrix associated with PCA be tracked and compared to the original. This could be done 

one of two ways. As the sensor collects more data, the covariance matrix could be from 
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the last k columns collected or the covariance matrix could be from the part of the image 

that has been collected so far. Whichever covariance matrix is used, it should be 

compared to the covariance matrix used in the original PCA. If a significant difference 

occurs, then the PCA needs to be redone. Future research could focus on how to track the 

covariance matrices and which covariance matrices to track. 

5.3.2 Trace of the Covariance Matrix 

As discussed in chapter 4, the method of tracking the covariance matrix picked up 

on large spectral differences from pixel to pixel. It is possible to find a way to track the 

covariance matrix in a more time efficient manner. This method could then be 

incorporated to produce even faster anomaly detector algorithms. It may also be possible 

to use this method as a pre-processor or a rudimentary anomaly detector, since it picks up 

large spectral differences.  

5.3.3 Step Changes to the Covariance Matrix 

There are methods out there that make changes to mean and covariance methods 

at each step. So in our case, as we move on to a new test pixel, the covariance matrix 

would be updated by update equations rather than re-calculating the covariance matrix 

every single time. One example of this type of step change is Algorithm AS 41 by Clarke  

(Clarke, 1971). 
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Appendix A 

 

Figure 15: Color Image for ARES 1D 

 

Figure 16: Color Image for ARES 1F 
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Figure 17: Color Image for ARES 2D 

 

Figure 18: Color Image for ARES 2F 
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Figure 19: Color Image for ARES 3D 

 

Figure 20: Color Image for ARES 3F 
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Figure 21: Color Image for ARES 4 

 

Figure 22: Color Image for ARES 4F 
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Figure 23: Color Image for ARES 5 

 

Figure 24: Color Image for ARES 5D_20kFT 
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Appendix B 
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